Tuesday, May 22, 2018

Review: Make: Electronics and Make:More Electronics


Charles Platt's Make: Electronics and Make: More Electronics.

Amazon links:
If you're interested in learning electronics, I highly recommend these two books by Charles Platt. They are hands down the best books I have ever seen on the subject, spectacular resources for the beginner.

Rather than focusing on theory, Platt jumps right into hands-on experimentation. The books are organized as a series of experiments and circuit-building projects that build knowledge incrementally.

He calls it "learning by discovery". He then follows up with just enough theory to explain what's going on. This is an extremely effective method that avoids getting bogged down.

I first learned electric theory in high school science. I learned Ohm's Law and basic circuit layout, including the equations for computing series and parallel resistance. I learned further details in college physics.

But these didn't really cover the practical details of electronics. They didn't address detailed circuit design, combining components into useful projects.

I started to learn some of those details from the books of Forrest M. Mims III and George Young's book Digital Electronics: A Hands-on Learning Approach. The latter introduced me to integrated circuit chips (IC's) and digital logic, as well as breadboard experimentation.

That constituted the bulk of my electronics knowledge for the past 35 years. But there was still a lot missing, particularly an intuitive understanding of electronics and all those other random parts surrounding the IC's.

Then I found Platt's books. Platt has a real gift for explaining things at an intuitive level in just a few concise paragraphs and clear diagrams.

He delves deep into the practical details. No detail is too small. For a beginner trying to learn from a book, this is critical.

He explains the most basic things so that you know how to wire up a breadboard and check things with a meter. He shows how things work internally, both mechanically and electrically, so a component isn't just an opaque black box.

The color diagrams are outstanding. One thing I really like is the way he steps from a circuit schematic diagram, to a breadboard-friendly schematic, to a breadboard component and wiring diagram, to a component value diagram, to an under-the-covers diagram illustrating all the electrical paths in the wiring and the breadboard connections hidden beneath.

He takes several projects from breadboard to final soldered board built into a simple enclosure. This shows how you can turn your experiment into a completed useful or fun gadget.

The diagrams and project builds really show where other books fall short. Most books show a schematic, and maybe a completed breadboard or a completed wired-up project. But they don't show the stepwise process to get from the start to the end.

That process is not always obvious and is full of opportunities for mistakes, so having it laid out in detail is a huge benefit. He also covers some of the things that can go wrong and how to diagnose and fix them.

The clarity of the diagrams and overall layout make the books very readable. This is another improvement over other books.

If you send a registration email to Platt, he'll add you to his email list for a bonus project and book updates.

Microcontrollers

Platt doesn't emphasize microcontrollers in these books. In an age where Arduinos, Raspberry Pi's, and other microcontrollers allow you to solve nearly any problem with a little embedded software, he mostly shows you what you can do without them. One experiment does cover using an Arduino.

He also discusses the pros and cons of replacing the discrete components with microcontrollers in several experiments. This is actually very useful from an engineering standpoint, giving you choices in how to implement things.

That also ensures that if you do incorporate microcontrollers into your projects, you understand how to integrate them with external components. There are many books on getting started with microcontrollers, but they tend to gloss over the details of those other components, assuming you already understand them. Which you will if you read these books!

Component Kits

Component kits for all the experiments in the first book are available online. You can certainly gather parts on your own, but the kits offer you one-stop shopping of the correct parts.

I used ProTechTrader, the supplier he recommends in his email, and I recommend them highly based on my experience. Make sure you get the kits for the 2nd edition.

The kits are available for the best price directly from the ProTechTrader website. They offer 3 kits, covering experiments 1-11, 12-24, and 25-34. Each is available in regular and deluxe versions. The deluxe versions add things like a digital multimeter, soldering iron, 9V power supply, and upgraded magnet.

I purchased the regular version of each kit, since I already had most of the deluxe items, with free economy 3-10-day shipping. The kits arrived in 3 days.

While you pay a little extra per part for convenience vs. buying everything separately, it was well worth it. The parts are extremely well organized. They're bagged and labeled by value, stored in compartmentalized containers, and identified by experiment.

Don't underestimate the value of the labor that went into that. Platt dedicates several pages in his book to organization of workspace and parts. That's key to efficient work. Rummaging around in a box of loose parts will make you tear your hair out.

Additional Books


Platt's Make: Tools and 3-volume Encyclopedia of Electronic Components.

Platt has several additional books that make useful companions to this pair:
The first book (no, it's not about how to make tools, it's just part of the Make: series) covers the basic hand and small power tools you'll find at home centers and hardware stores, showing how to use them to build small projects. It feature Platt's usual deep attention to practical details.

The book contains a number of simple projects in wood and plastic. The methods for working with plastic are particularly noteworthy, because while there are many books about woodworking, there aren't many about plastic.

These are the skills you need to build different styles of enclosures and stands for your electronics projects, and can also be applied to other mechanical aspects such as robotics.

The remaining books are a 3-volume encyclopedia of electronic components. This is all the information that he didn't have room for in the other books, plus more. Where those books were written as tutorials, this is a reference set.

He's compiled a vast trove of information culled from manufacturer data sheets, tutorials, reference books, and other sources to create a centralized, practical one-stop resource.

Need to know pinouts, sample circuits, voltage levels, alternative packages? You can find them here, in Platt's signature level of detail.